Вся трудность заключается в нахождении большего основания. Оно равно сумме меньшего основания и двух катетов прямоугольных треугольников, образованных боковой стороной и высотой трапеции (треугольники равны между собой по гипотенузе и катету, а значит и требуемые катеты тоже равны).
Найдем катет.
По теореме Пифагора:
4^2 + x^2 = 5^2.
16 + х^2 = 25.
x^2 = 9
x = 3.
Следовательно, требуемый катет = 3 см. Таких треугольников два, как уже говорилось.
Большая сторона трапеции = 6 + 3 + 3 = 12 см.
Теперь найдем площадь трапеции: полусумма оснований на высоту.
опустим две высоты, имеем прямоугольник со сторнами равными высоте и меньшему основанию и два прямоугольных треугольника, где один катет - высота, второй 1/2 разницы между большим и меньшим основанием. Находим этот катет:
Вся трудность заключается в нахождении большего основания.
Оно равно сумме меньшего основания и двух катетов прямоугольных треугольников, образованных боковой стороной и высотой трапеции (треугольники равны между собой по гипотенузе и катету, а значит и требуемые катеты тоже равны).
Найдем катет.
По теореме Пифагора:
4^2 + x^2 = 5^2.
16 + х^2 = 25.
x^2 = 9
x = 3.
Следовательно, требуемый катет = 3 см. Таких треугольников два, как уже говорилось.
Большая сторона трапеции = 6 + 3 + 3 = 12 см.
Теперь найдем площадь трапеции: полусумма оснований на высоту.
(6+12)/2 * 4 = 36 см^2
опустим две высоты, имеем прямоугольник со сторнами равными высоте и меньшему основанию и два прямоугольных треугольника, где один катет - высота, второй 1/2 разницы между большим и меньшим основанием. Находим этот катет:
25-16-9 катет равен 3см. Большее основание - 2*3+6=12. Площадь трапеции 1/2* (12+6)*4=9*4=36