Впрямоугольном треугольнике биссектриса прямого угла делит гипотенузу в соотношении 1: 3. в каком отношении делит гипотенузу опущенная на нее высота?

LIBOVALEmail LIBOVALEmail    2   27.06.2019 03:40    1

Ответы
настя7585 настя7585  21.07.2020 18:35
Если h - высота из прямого угла, а b - острый угол треугольника,
то отрезки, на которые эта высота делит гипотенузу равны h*tg(b) и h*ctg(b).
Значит, их отношение равно tg^2(b). Но tg(b) - это отношение катетов, которое равно отношению длин отрезков, на которые биссектриса делит гипотенузу (по свойству биссектрисы). Т.е. tg(b)=3. Значит искомое отношение равно tg^2(b)=3^2=9. Таким образом, высота делит гипотенузу в отношении 1:9.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия