Впрямоугольном треугольнике abc гипотенуза ab=5 тангенсом угла =3. найти площадь треугольника?

Иришка9Класс Иришка9Класс    3   22.05.2019 14:40    1

Ответы
maxmax41 maxmax41  18.06.2020 01:26
В прямоугольном треугольнике abc гипотенуза ab=5 тангенсом угла =3.
найти площадь треугольника?
Зная tga=3 легко найти cosa и sina
cosa=1/корень(1+tg^2a)=1/корень(1+9)=1/корень(10)
sina=корень(1-cos^2a)=корень(1-1/10)=корень(9/10)=3/корен(10)
Соседний катет AC равен
IACI=IABI*cosa=5*1/корень(10)=корень(10)/2
Площадь треугольника равна
S=(1/2)*IABI*IACI*sina = (1/2)*5*(корень(10)/2)*3/корень(10)=15/4= 3,75

Второй вариант
Обозначим прямоугольный треугольник как АВС где угол С-прямой
АС=5-гипотенуза ВС и АВ -катеты 
tga = ВС/AC =3 или ВС =3АС
Пусть АС =х
Тогда ВС=3х
По теореме Пифагора
АС^2+BC^2=AB^2
x^2+9x^2=25
10x^2=25
x=корень(2,5)
Поэтому катеты равны
AC=корень(2,5)
ВС=3корень(2,5)
Площадь треугольника равна
S=(1/2)AC*BC=(1/2)*корень(2,5)*3корень(2,5)=3*2,5/2=7,5/2=3,75
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия