Вправильном тетраэдре abcd точка м-середина ребра ad точка к делит ребро db в отношении 1: 3 считая от точки d и является серединой отрезка dp а)определите взаимное расположение прямой мк и плоскости сечения арс тетраэдра б)на плоскости сечения арс постройте такую точку т,чтобы прямая мт была перпендикулярна этой плоскости

Mognolia Mognolia    3   21.03.2019 09:50    9

Ответы
batya757757 batya757757  26.05.2020 12:49

a)

КD=RP. DM=AM

КМ - средняя линия треугольника АРD. КМ параллельна РА⇒КМ параллельна  плоскости АРС.
Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.
---
b)

Проведем в плоскости АСР прямую а, пересекающуюся с АР.

Из точки пересечения этой прямой со стороной РА возведем перпендикуляр к этой прямой до пересечения с ребром DA.

Из точки М опустим к АР прямую, параллельную построенную перпендикулярному отрезкуот АР до АD.

2-ое cвойство перпендикулярных прямой иплоскости. 
Две прямые, перпендикулярные одной и той же плоскости, параллельны.

Верно и обратное утверждение. Если прямая параллельна прямой, перпендикулярной плоскости, то она тоже перпендикулярна этойплоскости.
МТ будет перпендикулярна пересекающимся прямым а и АР и перпендикулярна плоскости АРС.

Вспомним  также, что данная в задаче фигура - правильный тетраэдр. Следовательно,в нем не только основание, но и все грани -правильные треугольники.
Точка Р - середина ВD, т.к. КD=KP; BP=2KP.
РС - медиана и высота к ВD  и потому перпендикулярна ВD  и АР

Плоскость АСР перпендикулярна плоскости АВD.

Свойство взаимно перпендикулярных плоскостей.

Прямая, лежащая в одной из двух взаимно перпендикулярных плоскостей и перпендикулярная их общей прямой, перпендикулярна другой плоскости.

 

Если из М опустить перпендикуляр к АР, то МТ перпендикулярна плоскости АРС


Вправильном тетраэдре abcd точка м-середина ребра ad точка к делит ребро db в отношении 1: 3 считая
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия