Впараллелограмме abcd диагонали ac и bd пересекаются в точке м. докажите что площадь параллелограмма abcd в четыре раза больше площади треугольника amb

zill81 zill81    3   10.03.2019 04:30    11

Ответы
Аниматик Аниматик  24.05.2020 13:49
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd.
В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС).
Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных).
Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.  Что и требовалось доказать.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия