Расстояние от точки K до прямой MN - отрезок FK, равный (см).
Объяснение:
1. Рассмотрим равносторонний ΔMNK:
Т.к. ΔMNK - равносторонний, то каждый угол будет равняться .
По условию из точки K к отрезку MN проведём биссектрису KF, которая по свойству делит ∠K на два равных угла.
⇒ ∠NKF = ∠FKM = 60° : 2 = 30°.
Расстояние от точки до прямой/отрезка - перпендикуляр.
⇒ Проводим из вершины F перпендикуляр к отрезку MK, равный (см).
Благодаря этому перпендикуляру, получаем прямоугольный ΔFGK с прямым углом G (оставшиеся два угла - острые).
2. Рассмотрим прямоугольный ΔFGK:
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет FG в 2 раза меньше гипотенузы FK, т.е. FK = (см).
Т.к. ΔMNK - равносторонний ⇒ он является и равнобедренным с основанием NM.
Биссектриса, проведённая к основанию равнобедренного треугольника, является и высотой, и медианой.
⇒ биссектриса FK - высота треугольника MNK, и в тоже время перпендикуляр к прямой MN.
⇒ отрезок FK - расстояние от точки K до прямой MN.
Расстояние от точки K до прямой MN - отрезок FK, равный (см).
Объяснение:
1. Рассмотрим равносторонний ΔMNK:
Т.к. ΔMNK - равносторонний, то каждый угол будет равняться .
По условию из точки K к отрезку MN проведём биссектрису KF, которая по свойству делит ∠K на два равных угла.
⇒ ∠NKF = ∠FKM = 60° : 2 = 30°.
Расстояние от точки до прямой/отрезка - перпендикуляр.
⇒ Проводим из вершины F перпендикуляр к отрезку MK, равный (см).
Благодаря этому перпендикуляру, получаем прямоугольный ΔFGK с прямым углом G (оставшиеся два угла - острые).
2. Рассмотрим прямоугольный ΔFGK:
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет FG в 2 раза меньше гипотенузы FK, т.е. FK = (см).
Т.к. ΔMNK - равносторонний ⇒ он является и равнобедренным с основанием NM.
Биссектриса, проведённая к основанию равнобедренного треугольника, является и высотой, и медианой.
⇒ биссектриса FK - высота треугольника MNK, и в тоже время перпендикуляр к прямой MN.
⇒ отрезок FK - расстояние от точки K до прямой MN.