В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра CD, CB и диагональ CD1 равны соответственно 5, 6 и √29 . Найдите объём параллелепипеда ABCDA1B1C1D1.
Объяснение: если записать значения сторон в том порядке в котором они даны, а именно: СД=5; СВ=6; СД1=√29, то для начала найдём ДД1 по теореме Пифагора: ДД1²=СД1²-СД²
ДД1²=√29²-5²=29-25=4; ДД1=√4=2
ДД1=2. Теперь найдём объём параллелепипеда, зная его длину, ширину и высоту по формуле:
ответ: V=60
Объяснение: если записать значения сторон в том порядке в котором они даны, а именно: СД=5; СВ=6; СД1=√29, то для начала найдём ДД1 по теореме Пифагора: ДД1²=СД1²-СД²
ДД1²=√29²-5²=29-25=4; ДД1=√4=2
ДД1=2. Теперь найдём объём параллелепипеда, зная его длину, ширину и высоту по формуле:
V=СД×СВ×ДД1=5×6×2=60