в правильной усеченной треугольной пирамиде высота равна 10 см,а стороны оснований 60 см и 120 см. Вычислить боковую поверхность пирамиды

Aieks01 Aieks01    3   25.05.2021 10:49    1

Ответы
ЮлияМезина ЮлияМезина  24.06.2021 10:51

Відповідь:

5400 см^2.

Пояснення:

Боковые грани правильной усеченной треугольной пирамиды - это трапеции с основаниями 60 см. и 120 см. Найдем высоту трапеции.

Рассмотрим вид сверху на пирамиду.

Треугольник АВС имеет угол В - прямой, угол С = 30° и сторону ВС = 30 см.

АВ = 30 × tg 30° = 17,32 см.

Если посмотреть на пирамиду сбоку, то высота пирамиды и отрезок АВ - это катеты треугольника, гипотенузой которого является высота трапеции ( боковой грани усеченной пирамиды ).

Н = sqrt ( 10^2 × 17,32^2 ) = sqrt 400 = 20 см.

Вычислим площадь боковой грани

Sтр = ( 60 + 120 ) / 2 × 20 = 1800 см^2.

Площадь боковой поверхности нашей пирамиды равна трем площадям трапеции.

S = 3 × Sтр = 3 × 1800 = 5400 см^2.


в правильной усеченной треугольной пирамиде высота равна 10 см,а стороны оснований 60 см и 120 см. В
ПОКАЗАТЬ ОТВЕТЫ
Pailevanyan Pailevanyan  24.06.2021 10:51

ответ: 5400см²

Объяснение:

Боковыми гранями  правильной усеченной пирамиды являются  равные равнобедренные трапеции. Для  нахождения площади  боковой поверхности нужно найти высоту этих трапеций.

Для нахождения боковой поверхности усечённой пирамиды надо:

S (усеч пирамиды) = S (трап. АА1С1С)*3

S (трап. АА1С1С) =(А1С1+АС)/2*НН1

В треугольнике АВС т.О - центр  вписанной окружности и по свойству медиан делит ВН в отношении 2:1, считая от вершины

см фото


в правильной усеченной треугольной пирамиде высота равна 10 см,а стороны оснований 60 см и 120 см. В
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия