Точки m и n середины сторон соответственно bc и cd параллелограмма abcd. отрезки am и bn пересекаются в точке о.найдите отношение mo/oa.

nastya06nastik nastya06nastik    1   17.05.2019 17:00    7

Ответы
roma1xayatov roma1xayatov  10.06.2020 22:16

BN ∩ AD = L

ΔBNC = ΔLND по стороне и двум углам прилежащим к ней (CN=DN по условию; ∠BNC=∠LND как вертикальные; ∠NCB=∠NDL как накрест лежащие), поэтому BC=LD.

Пусть BM = x, тогда BC = 2x.

LD=BC=AD ⇒ AL=2BC=4x

ΔMOB ~ ΔAOL по трём углам (∠MOB=∠AOL как вертикальные; ∠OBM=∠OLA и ∠OMB=∠OAL как накрест лежащие), поэтому \dfrac{MO}{AO} =\dfrac{BM}{AL} =\dfrac x{4x} =\dfrac14

ответ: 1/4.


Точки m и n середины сторон соответственно bc и cd параллелограмма abcd. отрезки am и bn пересекаютс
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия