Взаимное расположение прямой и окружности зависит от расстояния от центра до прямой: 1. Если расстояние от центра окружности до прямой больше радиуса, то прямая и окружность не имеют общих точек, т.е. не пересекаются. 2. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют 2 общих точки, т.е. пересекаются. 3. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют 1 общую точку, т.е.прямая касается окружности.
По условию теоремы прямая проходит через конец радиуса, лежащий на окружности и перпендикулярна ему. Значит радиус и есть расстояние от центра окружности до прямой. Т.е. имеем третий случай расположения прямой и окружности: прямая является касательной.
1. Если расстояние от центра окружности до прямой больше радиуса, то прямая и окружность не имеют общих точек, т.е. не пересекаются.
2. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют 2 общих точки, т.е. пересекаются.
3. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют 1 общую точку, т.е.прямая касается окружности.
По условию теоремы прямая проходит через конец радиуса, лежащий на окружности и перпендикулярна ему. Значит радиус и есть расстояние от центра окружности до прямой. Т.е. имеем третий случай расположения прямой и окружности: прямая является касательной.