с геометрией
Радиус основания цилиндра равен 7 см , а его высота 5 см . Найти площади осевого сечения , боковой и полной поверхностей этого цилиндра

mashka710 mashka710    1   26.04.2020 19:41    234

Ответы
Dasha555m Dasha555m  25.12.2023 10:34
Для решения этой задачи нам понадобится знать формулы для нахождения площадей осевого сечения, боковой поверхности и полной поверхности цилиндра.

1. Площадь осевого сечения (Sосев):
Для нахождения площади осевого сечения необходимо знать форму основания цилиндра. Если основание цилиндра - круг, то площадь осевого сечения также можно найти по формуле площади круга S = π * r^2, где π - математическая константа, равная примерно 3.14, r - радиус основания цилиндра.

В нашем случае радиус основания цилиндра равен 7 см, поэтому площадь осевого сечения будет:
Sосев = π * 7^2 = 49π (квадратных сантиметров)

Ответ: Площадь осевого сечения этого цилиндра равна 49π квадратных сантиметров.

2. Боковая поверхность цилиндра (Sбок):
Для нахождения боковой поверхности цилиндра нам понадобится знать окружность основания цилиндра. Формула для нахождения боковой поверхности цилиндра Sбок = 2πrh, где r - радиус основания цилиндра, h - высота цилиндра.

В нашем случае радиус основания цилиндра равен 7 см, а высота равна 5 см, поэтому боковая поверхность цилиндра будет:
Sбок = 2π * 7 * 5 = 70π (квадратных сантиметров)

Ответ: Боковая поверхность этого цилиндра равна 70π квадратных сантиметров.

3. Полная поверхность цилиндра (Sполн):
Для нахождения полной поверхности цилиндра нужно сложить площадь основания и боковую поверхность: Sполн = Sоснования + Sбок.

В нашем случае площадь основания цилиндра равна 49π квадратных сантиметров (из пункта 1), а боковая поверхность равна 70π квадратных сантиметров (из пункта 2), поэтому полная поверхность цилиндра будет:
Sполн = 49π + 70π = 119π (квадратных сантиметров)

Ответ: Полная поверхность этого цилиндра равна 119π квадратных сантиметров.

Надеюсь, что мой ответ был подробным и понятным. Если у тебя возникли еще вопросы, не стесняйся задавать их!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия