дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, ОK-катет
ОК=OD*cosKOD=R*cos60=15*1/2=15/2 см
По теореме Пифагора KD^2=OD^2-OK^2=15^2-(15/2)^2=15^2(1-1/4)=15^2*3/4
тогда КD=15*√3/2
хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, ОK-катет
ОК=OD*cosKOD=R*cos60=15*1/2=15/2 см
По теореме Пифагора KD^2=OD^2-OK^2=15^2-(15/2)^2=15^2(1-1/4)=15^2*3/4
тогда КD=15*√3/2
хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3