Радиус окружности, вписаной в равносторонний треугольник, равен 14. найдите высоту этого триугольника.

Darkhan06 Darkhan06    2   23.08.2019 11:30    0

Ответы
sijwqjhauwb sijwqjhauwb  02.08.2020 21:24
Радиус окружности, вписанной в равносторонний треугольник, находится по формуле:
r = a/2√3, где а - сторона, отсюда a = 2r√3
a = 2•14•√3 = 28√3.
Проведем любую высоту. Эта высота является и медианой. Тогда по теорем Пифагора высота равна:
h √(28√3)² - (14√3)² = √2352 - 588 = √1764 = 42.
ответ: 42.
ПОКАЗАТЬ ОТВЕТЫ
astratovamaria astratovamaria  02.08.2020 21:24
А мы будем решать намного проще.
Треугольник равносторонний. Высоты, медианы и биссектрисы совпадают и  пересекаются в одной точке. Тогда радиус вписанной окружности будет равен 1/3 высоты. ( Медианы= высотам=биссектрисам , а медианы точкой пересечения делятся в отношении 1:2)

Значит, высота = 14*3=42

Все.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия