Радиус окружности, вписанной в правильный шестиугольник, равен 5 см. Вычисли сторону шестиугольника HC и его площадь.
HC=
5√3/3
10
5
5√ 3
10√ 3
10√3 /3 см
S=
10
50
25
50√ 3
25√ 3
10√ 3 см2


Радиус окружности, вписанной в правильный шестиугольник, равен 5 см. Вычисли сторону шестиугольника

xarimapula xarimapula    2   12.02.2021 11:43    835

Ответы
Arkadysh Arkadysh  12.02.2021 11:50

Объяснение:

на фото, отметь как лучший


Радиус окружности, вписанной в правильный шестиугольник, равен 5 см. Вычисли сторону шестиугольника
ПОКАЗАТЬ ОТВЕТЫ
vita142 vita142  23.01.2024 16:06
Для решения данной задачи, нам понадобятся знания о свойствах правильного шестиугольника и окружности, вписанной в него.

Свойства правильного шестиугольника:
1. Все стороны правильного шестиугольника равны между собой.
2. Все углы правильного шестиугольника равны между собой и равны 120 градусам.

Свойства окружности, вписанной в правильный шестиугольник:
1. Линия, проведенная от центра окружности до точки касания окружности со стороной шестиугольника, является радиусом окружности.
2. Радиус окружности, вписанной в правильный шестиугольник, равен половине длины стороны шестиугольника.

Теперь попробуем решить задачу.

1. Радиус окружности, вписанной в правильный шестиугольник, равен 5 см. По второму свойству окружности, радиус равен половине длины стороны шестиугольника. Поэтому длина стороны шестиугольника равна 2 * 5 см = 10 см.

Таким образом, ответ на первую часть вопроса "HC" равен 10 см.

2. Чтобы вычислить площадь шестиугольника, мы можем воспользоваться формулой для площади правильного шестиугольника:

S = (3 * √3 * a^2) / 2

где S - площадь шестиугольника, a - длина стороны.

Подставляем значение длины стороны a = 10 см в формулу:

S = (3 * √3 * (10 см)^2) / 2

Упрощаем выражение:

S = 3 * √3 * 100 см^2 / 2

S = 300√3 см^2 / 2

S = 150√3 см^2

Таким образом, ответ на вторую часть вопроса "S" равен 150√3 см^2.

В итоге, ответ на задачу:
HC = 10 см
S = 150√3 см^2.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия