Прямая касается двух окружностей с центрами о и р в точках а и в соответственно. через точку с, в которой эти окружности касаются друг друга, проведена их общая касательная, пересекающая прямую ав в точке м. найдите рм, если ав = 8 и уголсом=а.

MishaNY2001 MishaNY2001    3   21.05.2019 23:00    24

Ответы
123451529 123451529  01.10.2020 05:40

Эта задача проще, чем кажется.

1. ВМ = МС и МА = МС (по известному свойству касательных, проведенных из одной точки. Дальше я очевидные вещи просто буду констатировать - но это не значит, что вам не надо их обосновывать).

Таким образом, МС = АВ/2.

2. РМ - биссектриса угла ВМС, и МО - биссектриса угла СМА. В сумме эти углы составляют 180 градусов, поэтому сумма углов РМС и СМО равна 90 градусов. То есть треугольник РМО - прямоугольный.

3. Конечно, МС - высота к гипотенузе в этом треугольнике, и угол РМС = угол СОМ = а.

4. Отсюда РМ = МС/cos(а) = AB/(2*cos(a));

5. Это всё :)

 

Между прочим, треугольник АВС тоже прямоугольный :))) не хотите доказать?

Это я так, для себя больше. 

Тут есть который сразу напрашивается - угол ВСМ равен половине угла ВРС, а угол АСМ - половине угла АОС, и углы ВРС и АОС в сумме равны 180 градусов. 

Правильное решение, но есть более простое :) как я уже упоминал ,точки А, В и С равноудалены от точки М, то есть если построить окружность на АВ, как на диаметре, то угол ВСА будет вписанным углом, на него опирающимся. Значит, он прямой.

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия