Продолжение хорды дв пересекает касательную к этой окружности в точке а,с-точка касания. докажите что треугольники адс и авс подобны

ывцым ывцым    2   22.05.2019 14:50    3

Ответы
zakenalma zakenalma  18.06.2020 01:43
Вписанный угол CDA опирается на дугу СВ, и равен половине градусной меры этой дуги. Угол СВА между касательной АС и хордой СВ также измеряется половиной дуги СВ, поэтому у треугольников DCA и ABC, кроме общего угла САВ, есть еще равные углы ВСА и ADC. Поэтому эти треугольники подобны (у них равны все углы). 

Отсюда сразу следует, что АВ/АС = АС/AD; или AC^2 = AB*AD; известное свойство секущей и касательной из точки вне окружности.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия