Объяснение: Обозначим вершины ромба А В С Д. Так как его периметр=24см, то его сторона=24÷4=6см. Пусть острый угол ромба=х, тогда тупой=3х. Зная, что сумма прилегающих углов ромба составляет 180°, составим уравнение:
х+3х=180
4х=180
х=180÷4
х=45
Итак: угол А=углу С=45°, тогда
угол В=углу Д=45×3=135°.
Продлим прямую СД и проведём к ней из вершины А высоту АН. Получился прямоугольный треугольник АДН, в котором АН и ДН - катеты, а АД гипотенуза,
угол Н=90°. Так как прямая СД параллельна АВ, то угол А=углуАДН=45°
Если в прямоугольном треугольнике один из острых углов составляет 45°, то второй угол ДАН=45°. Этот треугольник равнобедренный АН=ДН, поэтому каждый катет равен гипотенузе/√2, поэтому АН=ДН=6/√2см
ответ: АН=6/√2см
Объяснение: Обозначим вершины ромба А В С Д. Так как его периметр=24см, то его сторона=24÷4=6см. Пусть острый угол ромба=х, тогда тупой=3х. Зная, что сумма прилегающих углов ромба составляет 180°, составим уравнение:
х+3х=180
4х=180
х=180÷4
х=45
Итак: угол А=углу С=45°, тогда
угол В=углу Д=45×3=135°.
Продлим прямую СД и проведём к ней из вершины А высоту АН. Получился прямоугольный треугольник АДН, в котором АН и ДН - катеты, а АД гипотенуза,
угол Н=90°. Так как прямая СД параллельна АВ, то угол А=углуАДН=45°
Если в прямоугольном треугольнике один из острых углов составляет 45°, то второй угол ДАН=45°. Этот треугольник равнобедренный АН=ДН, поэтому каждый катет равен гипотенузе/√2, поэтому АН=ДН=6/√2см