Периметр параллелограмма 40 см, разность двух его углов 120 градусов, а разница сторон 2 см. найдите площадь параллелограмма

Ivanov11kk22 Ivanov11kk22    1   21.09.2019 15:50    0

Ответы
ivankisa12 ivankisa12  08.10.2020 07:27
Сумма двух углов равна 180°, их разность 120°, значит, меньший угол равен (180°-120°):2=30°.
Полупериметр или сумма смежных сторон 40:2=20 (см), а их разность 2 см, следовательно, меньшая сторона (20-2):2=9 (см), а большая 9+2=11 (см).
Площадь параллелограмма равна произведению сторон на синус угла между ними
9×11×sin30°=99×1/2 = 49,5 см² 
Если такую формулу ещё не проходили, то сперва следует провести высоту к большей стороне и рассмотреть получившийся прямоугольный треугольник. В данном треугольнике высота будет являться катетом, лежащим напротив угла в 30°. Гипотенуза равна 9 см, значит, высота 9:2=4,5 (см)
По формуле площадь параллелограмма равна произведению стороны на высоту, проведённую к этой стороне 11*4,5=49,5см²
 
ответ: площадь параллелограмма 49,5 кв.см.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия