Площадь боковой поверхности призмы находят умножением периметра основания на высоту.
Посколькоу призма правильная, все ребра (их 6) основания имеют одинаковую величину. 24:6=4 см Высоту призмы найдем из боковой грани.
Диагональ делит грань на два равных прямоугольных треугольника,
в которых один катет - ребро основания.
второй - боковое ребро ( это высота)
и диагональ - гипотенуза. Можно без вычислений сказать, что высота здесь равна 3 см, так как получившийся треугольник - египетский, с отношением сторон 3:4:5 Но и проверив теоремой Пифагора, мы получим тот же результат: d²=a²+h² (d - диагональ грани, а- сторона основания, h - высота призмы) 25=16-h² h²=9 h =3 Площадь боковой поверхности этой призмы равна S=P*h=24*3=72 cм²
Площадь боковой поверхности призмы находят умножением периметра основания на высоту.
Посколькоу призма правильная, все ребра (их 6) основания имеют одинаковую величину.
24:6=4 см
Высоту призмы найдем из боковой грани.
Диагональ делит грань на два равных прямоугольных треугольника,
в которых один катет - ребро основания.
второй - боковое ребро ( это высота)
и диагональ - гипотенуза.
Можно без вычислений сказать, что высота здесь равна 3 см, так как получившийся треугольник - египетский, с отношением сторон 3:4:5
Но и проверив теоремой Пифагора, мы получим тот же результат:
d²=a²+h² (d - диагональ грани, а- сторона основания, h - высота призмы)
25=16-h²
h²=9
h =3
Площадь боковой поверхности этой призмы равна
S=P*h=24*3=72 cм²