Отрезок ab является диаметром окружности с центром o. через точку в проведены касательная bk и секущая bm. докажите, что углы mbk и bam равны. за восьмой класс. важно.
Вписанный угол равен половине соответственного ему центрального угла, опирающегося на ту же дугу, значит ∠ВОМ=2∠ВАМ. Треугольник ВОМ равнобедренный, ВО=МО, значит ∠ОВМ=(180-∠ВОМ)/2=(180-2∠ВАМ)/2=90°-∠ВАМ.
Касательная и радиус, проведённый к точке касания, перпендикулярны. ОВ⊥ВК, значит ∠MBK=90-∠ОВМ=90-(90-∠ВАМ)=∠ВАМ. Доказано.
PS Угол между касательной и секущей, проведённой через точку касания, является вырожденным случаем вписанного угла, значит угол MBK равен любому вписанному углу, опирающемуся на дугу ВМ. Это нужно запомнить и использовать дальше в решениях задач без обязательного доказательства.
Треугольник ВОМ равнобедренный, ВО=МО, значит ∠ОВМ=(180-∠ВОМ)/2=(180-2∠ВАМ)/2=90°-∠ВАМ.
Касательная и радиус, проведённый к точке касания, перпендикулярны. ОВ⊥ВК, значит ∠MBK=90-∠ОВМ=90-(90-∠ВАМ)=∠ВАМ.
Доказано.
PS Угол между касательной и секущей, проведённой через точку касания, является вырожденным случаем вписанного угла, значит угол MBK равен любому вписанному углу, опирающемуся на дугу ВМ. Это нужно запомнить и использовать дальше в решениях задач без обязательного доказательства.