Дан четырёхугольник KLMN.
Через векторы KL−→−=x→, LM−→−=y→, KN−→−=z→ вырази вектор MN−→−​


Дан четырёхугольник KLMN.Через векторы KL−→−=x→, LM−→−=y→, KN−→−=z→ вырази вектор MN−→−​

wildforme wildforme    1   20.05.2021 15:54    114

Ответы
kristinэ kristinэ  23.12.2023 10:03
Чтобы выразить вектор MN−→, нам понадобятся векторы KL−→, LM−→ и KN−→.

Мы можем использовать два векторных уравнения, которые помогут нам выразить вектор MN−→ через данные векторы:

MN−→ = MK−→ + KN−→
MN−→ = KL−→ + LM−→ + MN−→

1. Векторное уравнение MN−→ = MK−→ + KN−→:
MN−→ = MK−→ + (KL−→ + LM−→)
MN−→ = MK−→ + KL−→ + LM−→

2. Векторное уравнение MN−→ = KL−→ + LM−→ + MN−→:
Перенесем MN−→ на другую сторону уравнения:
MN−→ - MN−→ = KL−→ + LM−→
0 = KL−→ + LM−→

Таким образом, мы получили два уравнения, которые помогут нам выразить вектор MN−→ через данные векторы:

MN−→ = MK−→ + KL−→ + LM−→
0 = KL−→ + LM−→

Теперь рассмотрим значение каждого вектора:

KL−→ = x→
LM−→ = y→
KN−→ = z→

Подставим данные значения в наши уравнения:

MN−→ = MK−→ + x→ + y→ (1)
0 = x→ + y→ (2)

Теперь мы можем решить систему уравнений (1) и (2) для определения вектора MN−→.

Для этого вычтем уравнение (2) из уравнения (1):

MN−→ - (x→ + y→) = MK−→ + x→ + y→ - (x→ + y→)
MN−→ - (x→ + y→) = MK−→

Теперь сложим x→ и y→, чтобы объединить их в один вектор:

MN−→ - (x→ + y→) = MK−→
MN−→ - (x→ + y→) = MK−→
MN−→ - (x→ + y→) = MK−→

Таким образом, мы выразили вектор MN−→ через данные векторы KL−→, LM−→ и KN−→:

MN−→ = MK−→ - (x→ + y→)

И это наше окончательное решение.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия