Основанием прямой четырехугольной призмы является параллелограмм, стороны которого 16 см и 24√3 см, а острый угол 30°. Вычислите ее боковую поверхность, если большая диагональ призмы равна 65 см.

С рисунком!

VeNoM13371 VeNoM13371    3   30.03.2020 22:30    2

Ответы
victoria223 victoria223  12.10.2020 09:57

Объяснение:

Решение в прикрепленном файле.


Основанием прямой четырехугольной призмы является параллелограмм, стороны которого 16 см и 24√3 см,
ПОКАЗАТЬ ОТВЕТЫ
Nicoleta23 Nicoleta23  12.10.2020 09:57

ответ:1056+1584√3 (см²)

Объяснение: 1)Пусть параллелограмм АВСД-нижнее основание призмы,А₁В₁С₁Д₁-верхнее основание;  ∠А=30°, тогда  ∠Д=180°-30°=150°.      2)Боковая поверхность призмы S= P·h,                   P= 2·(АД+СД)= 2( 16+24√3)=32+48√3.       3)Вычислим большую диагональ основания АС по теореме косинусов из ΔАДС: АС²= АД²+СД²- 2·АС·СД·CosД= 16²+(24√3)² - 2·16·24√3·Cos150°= 256+1728 - 2·16·24√3· (-Cos30°)=256+1728 + 2·16·24√3· √3/2 =256+1728 +1152=3136, ⇒АС = √3136= 56.       4)Рассмотрим прямоугольный треугольник АА₁С, по условию большая диагональ призмы А₁С=65 см.⇒h²= AA₁²= А₁С²- AC²65²-56²= 1089, h=√1089=33 (cм)     5) Боковая поверхность призмы S= P·h =(32+48√3)                   P= 2·(АД+СД)= 2( 16+24√3)=(32+48√3)· 33 =1056+1584√3 (см²)  

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия