Окружностьпроходит через середины гипотенузы ав и катета вс прямоугольного треугольника авс касается катета ас. в каком отнощении точка касания делит катет ас?
Пусть точка D - середина гипотенузы АВ, а точка Е - середина катета ВС.
Отрезок DE - средняя линия треугольника, поэтому он параллелен катету АС и равен его половине. Центр окружности лежит на серединном перпендикуляре КМ к отрезку DE, поэтому КЕ = DE / 2 = AC / 4.
Таким образом, точка касания делит катет АС в отношении 1 : 3
Пусть точка D - середина гипотенузы АВ, а точка Е - середина катета ВС.
Отрезок DE - средняя линия треугольника, поэтому он параллелен катету АС и равен его половине. Центр окружности лежит на серединном перпендикуляре КМ к отрезку DE, поэтому КЕ = DE / 2 = AC / 4.
Таким образом, точка касания делит катет АС в отношении 1 : 3