ОЧЕНЬ НАДО С РЕШЕНИЕМ И ЧЕРТЕЖАМИ Вариант 1
1 Средние линии треугольника относятся как 2 : 2 : 4, а периметр треугольника равен 45 см. Найдите стороны треугольника.
2 Медианы треугольника АВС пересекаются в точке О. Через точку О проведена прямая, параллельная стороне АС и пересекающая стороны АВ и ВС в точках Е и F соответственно. Найдите EF, если сторона АС равна 15 см.
3 В прямоугольном треугольнике ABC (∠C = 90°) АС = 5 см, ВС = 5√3 см. Найдите угол В и гипотенузу АВ.
4 В треугольнике ABC ∠A = α, ∠C = β, сторона ВС = 7 см, ВН — высота. Найдите АН.
5 * В трапеции ABCD продолжения боковых сторон пересекаются в точке К, причем точка В — середина отрезка АК. Найдите сумму оснований трапеции, если AD = 12 см.

массисо массисо    3   16.03.2020 02:36    32

Ответы
Kimjkk Kimjkk  11.10.2020 22:32

Объяснение:

1. Средняя линия треугольника парраллельна стороне и равна его половине, 

Тогда если средние линии треугольника относятся как 2:2:4, то стороны относятся как 4:4:8 

4х+4х+8х=45 

16х=45

х = 45/16

4х = 45/16*4 = 45/4 = 11,25 

8х = 11,25*2 = 22,5

ответ: 11,25 см, 11,25 см,   22,5 см

2. Назовём медиану, проведённую из точки B, BD.

Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1

Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.

Рассмотрим ΔABC и ΔEBF

1) ∠B - общий

2) ∠BAC = ∠BEF - из решения

Отсюда следует, что эти треугольники подобны.

Коэффициент подобия будет равен отношению BD и BO

k = BD : BO = 3x : 2x = 3 : 2

Из подобия AC : EF = 3 : 2

15 : EF = 3 : 2

3EF = 30

EF = 10 см

ответ: 10 см

3. Учитывая, что согласно теореме Пифагора сумма квадратов катетов равна квадрату  гипотенузы, вычисляем длину гипотенузы АВ прямоугольного треугольника АВС:

АВ^2 = АС^2 + ВС^2

АВ - √АС^2 + ВСАС^2 = √5^2 + (5√3)^2 = √25 + 25 х 3 = √100 = 10 сантиметров.

Отношение катета АС к гипотенузе АВ является синусом угла АВС.

Синус угла АВС = АС/АВ = 5 : 10 = 1/2.

Угол АВС = 30°.

ответ: длина гипотенузы АВ равна 10 сантиметров, угол АВС = 30°.

4. Так как ВН высота треугольника АВС, то треугольники АВН и ВСН прямоугольные.

В прямоугольном треугольнике ВСН определим величину катета ВН через гипотенузу и противолежащий ВН угол.

Sinβ = ВН / ВС.

ВН = ВС * Sinβ = 7 * Sinβ см.

В прямоугольном треугольнике АВН выразим величину катета АН через катет ВН и угол ВАН.

tgα = BH /AH.

AH = BH / tgα = 7 * Sinβ / tgα см.

ответ: Длина отрезка АН равна 7 * Sinβ / tgα см.

5. Рассмотрим треугольник АКД, у которого, по условию, точка В середина отрезка АК, то есть АВ = ВК и так как ВС параллельна АД, как основания трапеции, тогда отрезок ВС является средней линией треугольника.

Длина средней линии треугольника равна половине длины параллельной ей стороны.

ВС = АД / 2 = 12/2 = 6 см.

Так как средняя линия треугольника совпадает с малым основанием трапеции, то сумма сторон трапеции будет равна 12 + 6 = 18 см.

ответ: Сумма оснований трапеции равна 18 см.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия