Декартовы координаты x и y могут быть переведены в полярную координату r:
r^{2}=y^{2}+x^{2} (по теореме Пифагора).
Подставим: r = √(3 + 9) = √12 = 2√3. Это полярный радиус.
Так как точка А во второй четверти (x < 0, y > 0), то для определения угла используем формулу:
φ = arc tg (y/x) + π = arc tg(√3/-3) + π = (-π/6) + π = 5π/6.
ответ: А(2√3; (5π/6)).
Декартовы координаты x и y могут быть переведены в полярную координату r:
r^{2}=y^{2}+x^{2} (по теореме Пифагора).
Подставим: r = √(3 + 9) = √12 = 2√3. Это полярный радиус.
Так как точка А во второй четверти (x < 0, y > 0), то для определения угла используем формулу:
φ = arc tg (y/x) + π = arc tg(√3/-3) + π = (-π/6) + π = 5π/6.
ответ: А(2√3; (5π/6)).