Найти площадь полной поверхности цилиндра с радиусом основания 3 см и дагональю осевого сечения 10 см.

stesha24 stesha24    2   19.03.2021 03:12    1

Ответы
OМайгад OМайгад  18.04.2021 03:53

207,24

Объяснение:

Радиус основания - 3 см, тогда диаметр - 6 см

вычисляем высоту по теореме Пифагора:

(все под корнем) \sqrt 10^{2} -6^{2}=\sqrt{64}=8

R=3  h=8

Площадь полной поверхности цилиндра:

S = 2 π R (R + h) = 2π*3*(3 + 8) = 66*3,14= 207.24

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия