Найдите углы треугольника
На рисунке CF — биссектриса равнобедренного треугольника CDE с основанием CE, ∠CFE=102°. Найдите углы треугольника CDE.
Решение:
1) Пусть ∠1=x°, тогда ∠3=2x°, так как
CDE− равнобедренный
CF− высота
CF− медиана
2) ∠2+∠3+∠CFE=
° по теореме о
сумме углов треугольника
существовании углов треугольника
равенстве углов треугольника
, поэтому x+2x+102°=
°, откуда 3x=
°, x=
°. Таким образом, ∠C=∠E=2x°=
°
3)
∠D=180°−(∠
+∠
)=
=
°
ответ: ∠D=
°,
∠C=∠E=
°.
Продолжить
3 из 5