В прямоугольном треугольнике ABC против угла в 30° ( ∠CAB ) лежит катет ( BC = 2 ), равный половине гипотенузы ( AC ), поэтому AC = 2 * BC = 2 * 2 = 4.
В прямоугольном треугольнике ACD ∠CAD = 90° - 45° = 45°, следовательно треугольник ACD - равнобедренный, и AC = CD = 4. По теореме Пифагора
Объяснение:
В прямоугольном треугольнике ABC против угла в 30° ( ∠CAB ) лежит катет ( BC = 2 ), равный половине гипотенузы ( AC ), поэтому AC = 2 * BC = 2 * 2 = 4.
В прямоугольном треугольнике ACD ∠CAD = 90° - 45° = 45°, следовательно треугольник ACD - равнобедренный, и AC = CD = 4. По теореме Пифагора![AD=\sqrt{AC^2+CD^2}=\sqrt{4^2+4^2}=\sqrt{16+16}=\sqrt{32}=\sqrt{16*2}=4\sqrt{2}](/tpl/images/4710/6227/4b149.png)