Найдите площадь полной поверхности цилиндра, если радиус основания равен 7 см, а диагональ осевого сечения равна 10√2 см

Дмитрий1425 Дмитрий1425    1   31.07.2019 13:40    10

Ответы
AsanovaLiana AsanovaLiana  28.09.2020 17:07
Диагональное сечение - это прямоугольник с диагональю 10√2 см и одной из сторон 14 см (равна двум радиусам).
По теореме Пифагора вторая сторона прямоугольника (она же высота цилиндра) равна h=\sqrt{(10\sqrt2)^2-14^2}=\sqrt{200-196}=2
Полная поверхность цилиндра:
S=Sбок+2Sосн = 2πr(r+h)=2π·7(7+2)=126π (см²)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия