Найдите периметр прямоугольника у которого точка пересечения диагоналей лежит на расстоянии 5 см от меньшей стороны и на расстоянии 4 см от большей стороны

rfvbkz28 rfvbkz28    2   13.06.2019 20:50    3

Ответы
varvara124 varvara124  10.07.2020 18:24
1) Пусть стороны прям-ка равны х и х+4 см.2) По теореме Фалеса расстояние от точки пересечения диагоналей до большей стороны равно половине меньшей стороны, т.е. х/2; а расстояние от точки пересечения диагоналей до меньшей стороны равно половине большей стороны, т.е. (х+4)/2=х/2+2. Сумма этих расстояний равна х/2+х/2+2, что по условию задачи составляет 14 см. Составим и решим уравнение: х/2+х/2+2=14; => x=14-2=12 (см) - длина меньшей стороны прям-ка. Тогда длина большей его стороны равна 12+4=16 (см).3) Диагональ прям-ка найдеМ по теореме Пифагора: d=sqrt(12^2+16^2)=sqrt(400)=20 (см).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия