Найдите объём конуса, если хорда его основания, равная 6 √2 см, отсекает четверть окружности основания, а угол между образующей и плоскостью основания равен 45° .

Тппсхп Тппсхп    2   24.06.2019 20:40    4

Ответы
svetbuxzp51 svetbuxzp51  20.07.2020 09:38
Если четверть окружности, то 360/4 =90 - длина дуги Из центра окружности проведите две прямые к к хорде. Вот угол, образованный этими двумя прямыми будет по свойству равен половине дуги, т к он на неё опирается 45° А в любом случае если из центра к хорде провести две прямые получится равнобедренный треугольник. Дальше две стороны принимаете за Х и решаете по теореме косинусов (6√2)^2=х^2 + х^2 - 2х*соs45 72=2x^2-x√2 36=x^2-x√2 Дальше не могу дорешать, батарея садится)) Доброй ночи
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия