На стороне pq треугольника pqr взята точка n, а на стороне pr – точка l, причем nq = lr. точка пересечения отрезков ql и nr делит отрезок ql в отношении m: n, считая от точки q. найдите отношение pn: pr.
Через точку Q проведём прямую, которая параллельна PR. Пусть эта прямая будет пересекаться с прямой NR в точке B. Из подобия треугольников BAQ и RAL следует, что
Из этого подобия треугольников BNQ и RNP находим, что
Объяснение:
Пусть QL и NR пересекаются в одной точке - A.
NQ=LR=a
Через точку Q проведём прямую, которая параллельна PR. Пусть эта прямая будет пересекаться с прямой NR в точке B. Из подобия треугольников BAQ и RAL следует, что
Из этого подобия треугольников BNQ и RNP находим, что