На рисунке луч bo и co биссектрисы углов b и c в треугольнике abc. на сторонах ab и ac отмечены точки m и n, так что bm = cn и bm=mo и cn=on доказать : m, o, n лежат на одной !
Угол АВО = угол ОВС; угол АСО = угол ОСВ потому что ОВ и ОС - биссектрисы. Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны). Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС. А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.
Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны).
Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС.
А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.