На рисунке луч bo и co биссектрисы углов b и c в треугольнике abc. на сторонах ab и ac отмечены точки m и n, так что bm = cn и bm=mo и cn=on доказать : m, o, n лежат на одной !

милка326 милка326    2   20.08.2019 18:20    13

Ответы
veralyagonova veralyagonova  05.10.2020 07:48
Угол АВО = угол ОВС; угол АСО = угол ОСВ потому что ОВ и ОС - биссектрисы. 
Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны).
Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС. 
А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия