такой путь либо замкнут, либо его можно вытянуть в прямую, у которой только 2 конца (то есть только 2 точки, у которых есть "входящий" путь, но нет "исходящего"). Само собой это касается обоих цветов, поэтому "концевых" точек не может быть больше 4.
В додекаэдре из каждой вершины выходит 3 ребра, то есть если для красного цвета эта вершина "проходная", то для синего - "концевая", которых (то есть "конецевых") не может быть больше 4 всего. Явное противоречие, поэтому, как мне кажется - нельзя :(((.
такой путь либо замкнут, либо его можно вытянуть в прямую, у которой только 2 конца (то есть только 2 точки, у которых есть "входящий" путь, но нет "исходящего"). Само собой это касается обоих цветов, поэтому "концевых" точек не может быть больше 4.
В додекаэдре из каждой вершины выходит 3 ребра, то есть если для красного цвета эта вершина "проходная", то для синего - "концевая", которых (то есть "конецевых") не может быть больше 4 всего. Явное противоречие, поэтому, как мне кажется - нельзя :(((.
А вот в тетраэдре можно :)