Медиана ам треугольника авс равна отрезку вм. докажите, что один из углов треугольника авс равен сумме двух других углов

ivanova329 ivanova329    1   01.03.2019 06:10    3

Ответы
ЛенаКошка ЛенаКошка  23.05.2020 17:52

Медиана треугольника делит сторону ВС на равные отрезки (ВМ=МС). Рассмотрим треугольник ВАМ. Стороны АМ=МВ, значит треугольник равнобедренный и углы при основании равны. Угол ВАМ=АВМ=а. В треугольнике АМС Сторона АМ=МС (так как ВМ=МС) и этот треугольник равнобедренный угол МАС=МСА=в. Угол В=а, угол С=в, а угол А=ВАМ+МАС=а+в

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия