Квадрат вращается вокруг своей стороны длиной 5 см. определи радиус, высоту и площадь полной поверхности цилиндра, который образовался (используй π≈3). r= смh= смsполн.≈ см2
Добрый день! Для того, чтобы решить эту задачу, нам необходимо разобраться в определениях и свойствах квадрата и цилиндра.
Квадрат - это фигура, у которой все четыре стороны имеют одинаковую длину. Площадь квадрата можно вычислить, умножив длину его стороны на саму себя. В данном случае, сторона квадрата равна 5 см, поэтому площадь квадрата будет равна 5 см * 5 см = 25 см².
Цилиндр - это трехмерная фигура, у которой два основания являются кругами, а боковая поверхность представляет собой поверхность вращения прямоугольника вокруг одной из его сторон.
Радиус цилиндра (r) - это расстояние от центра основания до любой точки на его окружности. Поскольку цилиндр образован вращением квадрата вокруг его стороны, то радиус цилиндра будет равен половине длины стороны квадрата, то есть 5 см / 2 = 2.5 см.
Высота цилиндра (h) - это расстояние между двумя параллельными плоскостями основания. Поскольку вращение квадрата происходит вокруг его стороны, то высота цилиндра будет равна длине этой стороны, то есть 5 см.
Теперь, чтобы найти площадь полной поверхности цилиндра, нам нужно вычислить площадь двух оснований и боковой поверхности, а затем сложить все три значения.
Площадь основания цилиндра - это площадь круга, которая вычисляется по формуле S = π * r², где π - это число пи, а r - радиус круга. В нашем случае, согласно условию, π ≈ 3, а r = 2.5 см. Подставляем значения в формулу и получаем Sосн. = 3 * (2.5 см)² = 3 * 6.25 см² = 18.75 см².
Боковая поверхность цилиндра - это площадь поверхности, которая образуется при вращении прямоугольника вокруг одной из его сторон. В нашем случае, это будет площадь поверхности квадрата, так как он является вращаемым прямоугольником. Площадь поверхности квадрата считается по формуле S = a * h, где a - длина стороны квадрата, а h - высота цилиндра. В нашем случае a = h = 5 см. Подставляем значения в формулу и получаем Sб.пол. = 5 см * 5 см = 25 см².
Теперь, чтобы найти площадь полной поверхности цилиндра, складываем площади двух оснований и боковой поверхности: Sполн. = 2 * Sосн. + Sб.пол. = 2 * 18.75 см² + 25 см² = 37.5 см² + 25 см² = 62.5 см².
Итак, радиус цилиндра (r) равен 2.5 см, высота цилиндра (h) равна 5 см, а площадь полной поверхности цилиндра (Sполн.) составляет 62.5 см².
Радиусом и высотой будут стороны квадрата
Площадь боковой поверхности ищется по формуле: S=2πrh
Соответственно S=2*π*5*5=50*3=150
Площадь оснований S=2*2πr^2
Найдем: S=2*2*3*25=300
Площадь полной поверхности: 150+300=450
Квадрат - это фигура, у которой все четыре стороны имеют одинаковую длину. Площадь квадрата можно вычислить, умножив длину его стороны на саму себя. В данном случае, сторона квадрата равна 5 см, поэтому площадь квадрата будет равна 5 см * 5 см = 25 см².
Цилиндр - это трехмерная фигура, у которой два основания являются кругами, а боковая поверхность представляет собой поверхность вращения прямоугольника вокруг одной из его сторон.
Радиус цилиндра (r) - это расстояние от центра основания до любой точки на его окружности. Поскольку цилиндр образован вращением квадрата вокруг его стороны, то радиус цилиндра будет равен половине длины стороны квадрата, то есть 5 см / 2 = 2.5 см.
Высота цилиндра (h) - это расстояние между двумя параллельными плоскостями основания. Поскольку вращение квадрата происходит вокруг его стороны, то высота цилиндра будет равна длине этой стороны, то есть 5 см.
Теперь, чтобы найти площадь полной поверхности цилиндра, нам нужно вычислить площадь двух оснований и боковой поверхности, а затем сложить все три значения.
Площадь основания цилиндра - это площадь круга, которая вычисляется по формуле S = π * r², где π - это число пи, а r - радиус круга. В нашем случае, согласно условию, π ≈ 3, а r = 2.5 см. Подставляем значения в формулу и получаем Sосн. = 3 * (2.5 см)² = 3 * 6.25 см² = 18.75 см².
Боковая поверхность цилиндра - это площадь поверхности, которая образуется при вращении прямоугольника вокруг одной из его сторон. В нашем случае, это будет площадь поверхности квадрата, так как он является вращаемым прямоугольником. Площадь поверхности квадрата считается по формуле S = a * h, где a - длина стороны квадрата, а h - высота цилиндра. В нашем случае a = h = 5 см. Подставляем значения в формулу и получаем Sб.пол. = 5 см * 5 см = 25 см².
Теперь, чтобы найти площадь полной поверхности цилиндра, складываем площади двух оснований и боковой поверхности: Sполн. = 2 * Sосн. + Sб.пол. = 2 * 18.75 см² + 25 см² = 37.5 см² + 25 см² = 62.5 см².
Итак, радиус цилиндра (r) равен 2.5 см, высота цилиндра (h) равна 5 см, а площадь полной поверхности цилиндра (Sполн.) составляет 62.5 см².