Из острого угла 60° вершины a единичного ромба abcd проведен перпендикуляр к плоскости ромба sa равный стороне ромба. найти расстояние между прямыми sc и ab

kristina13131 kristina13131    3   11.12.2019 11:39    2

Ответы
nikysa1 nikysa1  10.10.2020 19:56

Расстояние равно √21/7.

Объяснение:

Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.

Плоскость определяется двумя пересекающимися прямыми. В нашем случае плоскость DSC параллельна прямой АВ, так как прямая DC, принадлежащая этой плоскости, параллельна прямой АВ как прямые, содержащие противоположные стороны ромба.

Опустим перпендикуляр АР на прямую CD. АР перпендикулярна и прямой АВ. Соединим точки S и Р.

Прямая SP перпендикулярна прямой СР по теореме о трех перпендикулярах.  

Прямая SP принадлежит плоскости PSC. Следовательно, перпендикуляр АН, опущенный из точки А на прямую SP будет расстоянием между прямой АВ и плоскостью PCS, а значит и искомым расстоянием между прямыми АВ и SC.

В прямоугольном треугольнике APD катет

АР = AD*Sin60 = √3/2 (AD = 1 - дано).

В прямоугольном треугольнике ASP гипотенуза SP  по Пифагору равна: SP = √(AS²+AP²) = √(1²+3/4) = √7/2.  Тогда

АH = AS*AP/SP (как высота из прямого угла прямоугольного треугольника).

АH = 1*(√3/2) /(√7/2) =  √21/7.


Из острого угла 60° вершины a единичного ромба abcd проведен перпендикуляр к плоскости ромба sa равн
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия