Если сторону квадрата увеличить на 20% то его площадь увеличится на 275дм^2 вычесли сторону квадрата и его площадь до увеличения

Экфолорд Экфолорд    3   10.09.2019 02:10    13

Ответы
Какашки456 Какашки456  07.10.2020 04:22
Пусть сторона квадрата равна a, тогда при увеличении стороны на 20% ее длина становится равной 
a+ \dfrac{1}{5}a= \dfrac{6}{5}a

"его площадь увеличится на 275дм²" - значит разница площадей равна 275. Составляем уравнение.
( \dfrac{6}{5}a)^2-a^2=275 \\ \dfrac{36}{25}a^2-a^2=275 \\ \dfrac{11}{25}a^2=275 \\ a^2=625 \\ a=б25

По очевидным причинам корень a=-25 не подходит

Тогда площадь
S=a^2=25^2=625dm^2

ответ: 25дм; 625дм²
ПОКАЗАТЬ ОТВЕТЫ
Площадь квадрата
S = a^2
равна квадрату стороны
Подставим в эту формулу увеличенную на 20%. 20% - соответствует увеличению в 1,2 раза
S₁ = (1,2a)^2 = 1,44a^2
Приращение площади составит
ΔS = S₁-S = 0,44a^2
По условию это приращение составляет 275 дм^2
0,44a^2 = 275
a^2 = 275/0,44 = 275*25/11 = 25*25 = 625
S = a^2, так что площадь до увеличения составляла 625 дм^2
А сторона квадрата - 25 дм
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия