Докажите,что сумма двух медиан треугольника больше полусуммы двух сторон,к которым эти медианы проведены.

нигич1 нигич1    3   21.05.2019 01:10    4

Ответы
kkek7405 kkek7405  01.10.2020 01:52

Решение. Пусть AB=c (рис.4),
AC=b , BC=a и  CМ=m .
Пусть F – точка пересечения
прямой СМ и прямой,
проходящей через А
параллельно прямой ВС.
Ясно, что треуголник MAF=треугольнику MBC (по
стороне с\2 и двум
прилежащим углам)Получили, что MF=MC=m и AF=BC=a .По неравенству треугольника для треугольника AFC имеем: a+b больше чем 2m или m меньше чем ((a+b)/2)

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия