Докажите что при пересечение двух прямых а и б секущей накрест лежащие углы не равны, то прямые а и б пересекаются?

nagornayka69 nagornayka69    2   12.07.2019 15:20    1

Ответы
vkjfnjkvd vkjfnjkvd  18.09.2020 14:16
Пусть параллельные прямые А и В пересечены секущей MN.Докажем, что накрест лежащие углы, например 1 и 2,равны.
Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение НЕВЕРНО и угол 1 = 2.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия