Дан равнобедренный треугольник ABC, в котором проведены высота CD и перпендикуляр DE к боковой стороне ВС. Точка M – середина отрезка DE. Доказать, что отрезки АЕ и СМ перпендикулярны.
Вместо того, чтобы проводить отрезок CM (см. чертеж), я построил окружность на AC, как на диаметре. Середина AC - точка N - это центр этой окружности. Эта окружность проходит через все точки, из которых AC видна под прямым уголом, в частности - через точки D и F (основание высоты, в решении не нужна :) ).
Отрезок DE из условия является касательной к это окружности в точке D, так как ND II CB, как средняя линия треугольника ABC, то есть DE перпендикулярно радиусу ND.
В том числе эта окружность пересекает AE в точке K (из неё AC тоже видна под прямым углом, то есть ∠CKA = 90°). Я провожу отрезки CK и KM (M - середина DE), не предполагая, что они лежат на одной прямой. Для того, чтобы это "случилось", необходимо, чтобы ∠EKM = 90°. Вот это я и буду доказывать.
Треугольники AED и DKE подобны по 2 углам (один угол общий, а ∠KAD = ∠KDE, поскольку один угол вписаный, а другой лежит между касательной и секущей, и оба измеряются половиной дуги DK.
ND делит отрезок AE пополам (как средняя линия тр-ка ABC, ND делит пополам любую чевиану из вершины A), то есть Q - середина AE. Точки Q и M являются соответственными точками двух подобных треугольников, поэтому ∠QDE = ∠MKE = 90° чтд.
Если слова "являются соответственными точками" не понятны, то можно и так сказать - треугольники QDE и MKE подобны по двум пропорциональным сторонам и общему углу: QE и ME являются половинами сторон подобных треугольников AED и DKE, поэтому QE/ME = AE/ED = ED/EK;
Вместо того, чтобы проводить отрезок CM (см. чертеж), я построил окружность на AC, как на диаметре. Середина AC - точка N - это центр этой окружности. Эта окружность проходит через все точки, из которых AC видна под прямым уголом, в частности - через точки D и F (основание высоты, в решении не нужна :) ).
Отрезок DE из условия является касательной к это окружности в точке D, так как ND II CB, как средняя линия треугольника ABC, то есть DE перпендикулярно радиусу ND.
В том числе эта окружность пересекает AE в точке K (из неё AC тоже видна под прямым углом, то есть ∠CKA = 90°). Я провожу отрезки CK и KM (M - середина DE), не предполагая, что они лежат на одной прямой. Для того, чтобы это "случилось", необходимо, чтобы ∠EKM = 90°. Вот это я и буду доказывать.
Треугольники AED и DKE подобны по 2 углам (один угол общий, а ∠KAD = ∠KDE, поскольку один угол вписаный, а другой лежит между касательной и секущей, и оба измеряются половиной дуги DK.
ND делит отрезок AE пополам (как средняя линия тр-ка ABC, ND делит пополам любую чевиану из вершины A), то есть Q - середина AE. Точки Q и M являются соответственными точками двух подобных треугольников, поэтому ∠QDE = ∠MKE = 90° чтд.
Если слова "являются соответственными точками" не понятны, то можно и так сказать - треугольники QDE и MKE подобны по двум пропорциональным сторонам и общему углу: QE и ME являются половинами сторон подобных треугольников AED и DKE, поэтому QE/ME = AE/ED = ED/EK;