Через точку пересечения биссектрис вв1 и сс1 треугольника abc проведена прямая, паралельная прямой bc и пересекающая стороны ab и ac соответсвено в точках m и n . докажите, что mn=bm+cn
Обозначим точку пересечения биссектрис буквой О. Обратим внимание на две параллельные прямые ВС и МN Они пересекаются:
1) Секущей ВВ1.
При этом образуются равные накрестлежащие углы СВО и ВОМ по свойству параллельных прямых и секущей. Но ∠ СВО=∠ВОМ по условию задачи. Отсюда ᐃВМО - равнобедренный. МО=МВ
2) Секущей СС1.
При этом образуются равные накрестлежащие углы ВСО и СОN по свойству параллельных прямых и секущей. Но ∠ОСN=∠ВОС по условию задачи. ᐃ ОСN - равнобедренный и ОN=NС Из этого следует, что МО+ОN=ВМ+СN, иначе МN=ВМ+СN, что и требовалось доказать.
Сделаем рисунок.
Обозначим точку пересечения биссектрис буквой О.
Обратим внимание на две параллельные прямые ВС и МN
Они пересекаются:
1) Секущей ВВ1.
При этом образуются равные накрестлежащие углы СВО и ВОМ по свойству параллельных прямых и секущей.
Но ∠ СВО=∠ВОМ по условию задачи.
Отсюда ᐃВМО - равнобедренный. МО=МВ
2) Секущей СС1.
При этом образуются равные накрестлежащие углы ВСО и СОN по свойству параллельных прямых и секущей.
Но ∠ОСN=∠ВОС по условию задачи.
ᐃ ОСN - равнобедренный и ОN=NС
Из этого следует, что МО+ОN=ВМ+СN,
иначе МN=ВМ+СN, что и требовалось доказать.
Треугольник АВС, точка О - пересичение биссектрис ВВ1 и СС1
Треугольники МОС1 и NОС равнобедренные
Угол ОСВ = углу СОN как внутренние раносторонние при параллельних прямых ВС и МN и секущей СС1 и равен углу NСО
Угол ОВС = углу ВОМ как внутренние раносторонние при параллельних прямых ВС и МN и секущей ВВ1 и равен углу ВОМ
NС = NО, МВ=МО
NМ= NС+МВ