Через середину k медианы bm треугольника abc и вершину a проведена прямая, пересекающая сторону bc в точке p. найдите отношение площади четырёхугольника kpcm к площади треугольника amk

РаминаГасымлы РаминаГасымлы    2   22.05.2019 00:50    2

Ответы
6a6yle4ka 6a6yle4ka  01.10.2020 05:49

Т.к. ВМ - медиана треугольника АВС, то S(ABM)=S(MBC)

Т.к. АК - медиана треугольника АВМ,

 * то S(ABK)=S(AKM)=S(ABM)/2=S(MBC)/2

Проведем МД так, что МД || КР, тогда КР - средняя линия в треуг-ке ВДМ, а МД - средняя линия в треуг-ке АРС, значит ВР=РД=ДС, т.е. ВС=3ВР. По условию ВК=КМ, т.е. ВМ=2ВК. Тогда

S(KBP)=1/2*ВК*ВР*sinКВР

S(МВС)=1/2*ВМ*ВС*sinКВР=1/2*2ВК*3ВР*sinКВР=3*ВК*ВР*sinКВР

Тогда  S(KBP)/S(МВС) = 1/ 6, а значит

 * S(KPСМ)/S(МВС) = 5/6.

Сравниваем строчки, помеченные * и получаемS(KPСМ) :  S(AМK) = 12:5 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия