Боковые стороны kl и mn трапеции klmn равны 10 и 26 соответственно. отрезок, соединяющий середины диагоналей, равен 12, средняя линия трапеции равна 24. прямые kl и mn пересекаются в точке а. найдите радиус окружности,
вписанной в треугольник аlm

naletova1974 naletova1974    3   10.03.2019 06:10    11

Ответы
Pузик Pузик  24.05.2020 14:14

1) отрезок, соединяющий середины диагоналей, равен полуразности оснований. С другой стороны, он же является частью средней линии.

2) Пусть основания трапеции a и b. Тогда: (a-b)/2=12.

3) Т.к. средняя линия равна полусумме оснований, то (a+b)/2=24 (по условию)

4) Из двух вышеприведённых равенств составим систему: {a-b=24; a+b=48}. 2a=72; a=36; b=12

5) треугольники KAN подобен LAM (KN||LM)

6) LN/KN = 12/36 = 1/3; AL/AK = AM/AN = 1/3 (из подобия)

7) AK - AL = 10; AN - AM = 26 (боковые стороны в условии)

8) Из (6) и (7): AL=5; AM=13

9) треугольник ALM - прямоугольный (его стороны 5; 12 и 13 удовлетворяют теореме Пифагора)

10) Радиус вписанной в прямоугольный треугольник окружности равен:

r=(a+b-c)/2, в нашем случае: r=(5+12-13)/2=4/2=2

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия