Биссектриса cn треугольника abc делит сторону ab на отрезки an=6 и nb=11. касательная к описанной окружности треугольника abc, проходящая через точку c, пересекает прямую ab в точке d, найдите cd.

wwwrlfoto wwwrlfoto    2   01.07.2019 05:10    1

Ответы
mirapax1997ozb3lk mirapax1997ozb3lk  02.10.2020 17:04
Исходя из свойства биссектрисы, АС/АN=ВС/ВN
АС/6=ВС/11 или АС/ВС=6/11.
Угол между касательной СД и хордой АС, проведенной в точку касания С, равен половине дуги, стягиваемой этой хордой: <АСД= дуга АС/2.
Вписанный угол АВС опирается тоже на дугу АС и равен <АВС= дуга АС/2.
Значит <АВС=<АСД.
У ΔАСД  и ΔСВД два угла равны: <АВС=<АСД и <СДВ=<СДА (они совпадают), значит эти треугольники подобны по 1 признаку.
АС/ВС=СД/ВД=АД/СД
СД/ВД=6/11, ВД=11СД/6
АД/СД=6/11, АД=6СД/11
ВД=АД+АВ=АД+6+11=АД+17
11СД/6=6СД/11+17
121СД=36СД+1122
СД=1122/85=13.2
ответ: 13.2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия