Объяснение:
6) Обозначим вершины треугольника АВС. R радиус описанной окружности найдём по формуле:
R=(abс)/(4S) где abc – стороны треугольников, а S –его площадь.
где р – полупериметр.
р=(АВ+ВС+АС)/2=(13+14+15)/2=42/2=21
S=84(ед²)
R=(13×14×15)/(4×84)=2730/336=8,125(ед)
r=S/p – где r –радиус вписанной окружности, а р – полупериметр.
r=84/21=4(ед)
ОТВЕТ: r=4(ед); R=8,125(ед)
7) а(2; –6); b(–6; 2); c(2a+b)–?
2a=(2×2; –6×2)=(4; –12)
2a+b=(4+(–6); –12+2)=(–2; –10)
2a+b(–2; –10)
Абсолютная величина вектора 2а+b:
ОТВЕТ: координаты вектора 2а+b(–2; –10);
абсолютная величина вектора 2а+b=2√26
Объяснение:
6) Обозначим вершины треугольника АВС. R радиус описанной окружности найдём по формуле:
R=(abс)/(4S) где abc – стороны треугольников, а S –его площадь.
где р – полупериметр.
р=(АВ+ВС+АС)/2=(13+14+15)/2=42/2=21
S=84(ед²)
R=(13×14×15)/(4×84)=2730/336=8,125(ед)
r=S/p – где r –радиус вписанной окружности, а р – полупериметр.
r=84/21=4(ед)
ОТВЕТ: r=4(ед); R=8,125(ед)
7) а(2; –6); b(–6; 2); c(2a+b)–?
2a=(2×2; –6×2)=(4; –12)
2a+b=(4+(–6); –12+2)=(–2; –10)
2a+b(–2; –10)
Абсолютная величина вектора 2а+b:
ОТВЕТ: координаты вектора 2а+b(–2; –10);
абсолютная величина вектора 2а+b=2√26