4. отрезки ав и cd являются окружности. найдите длину хорды cd, если ав = 10 см, а расстояния от центра окружности до хорд ав и cd равны соответственно 12 см и 5 см.
Дано: АВ=10 см h₁=12 см h₂= 5 см Найти: CD Решение: h₁ - высота равнобедренного треугольника АВО По т.Пифагора R²=h₁²+(AB/2)²=12²+(10/2)²=144+25=169 R=√169=13 Те же самые рассуждения делаем по отношению к равнобедренному треугольнику ODC (CD/2)²=R²-h₂²=13²-5²=169-25=144 CD/2=√144=12 CD=2*12=24
АВ=10 см
h₁=12 см
h₂= 5 см
Найти: CD
Решение:
h₁ - высота равнобедренного треугольника АВО
По т.Пифагора
R²=h₁²+(AB/2)²=12²+(10/2)²=144+25=169
R=√169=13
Те же самые рассуждения делаем по отношению к равнобедренному треугольнику ODC
(CD/2)²=R²-h₂²=13²-5²=169-25=144
CD/2=√144=12
CD=2*12=24