4()даны векторы a(1; -1; 2) b(6; 0; 4)найдите |3a-0,5b|найдите (а+b)*(a-3b)найдите косинус угла между вектopами a и b

Vee19 Vee19    3   02.05.2019 19:35    38

Ответы
kursovaalena8 kursovaalena8  23.01.2024 11:05
Хорошо, давайте решим поставленные вопросы по очереди.

1. Найдем вектор |3a-0,5b|
Для этого нужно умножить каждую компоненту вектора на соответствующий коэффициент и затем сложить результаты.

3a = 3 * (1; -1; 2) = (3; -3; 6)
0,5b = 0,5 * (6; 0; 4) = (3; 0; 2)

Теперь найдем разность векторов:

(3; -3; 6) - (3; 0; 2) = (0; -3; 4)

Наконец, найдем длину вектора (0; -3; 4):

|(0; -3; 4)| = √(0^2 + (-3)^2 + 4^2) = √(0 + 9 + 16) = √25 = 5

Итак, |3a-0,5b| = 5.

2. Найдем значение выражения (а+b)*(a-3b)
Для этого сначала умножим каждую компоненту векторов на соответствующий коэффициент, а затем просуммируем результаты:

а+b = (1; -1; 2) + (6; 0; 4) = (7; -1; 6)

a-3b = (1; -1; 2) - 3 * (6; 0; 4) = (1; -1; 2) - (18; 0; 12) = (-17; -1; -10)

И теперь умножим эти два вектора:

(7; -1; 6) * (-17; -1; -10) = 7*(-17) + (-1)*(-1) + 6*(-10) = -119 + 1 - 60 = -178

Итак, (а+b)*(a-3b) = -178.

3. Найдем косинус угла между векторами a и b.
Косинус угла между двумя векторами можно найти по формуле:

cos(θ) = (a*b) / (|a| * |b|)

Где (a*b) - скалярное произведение векторов a и b, а |a| и |b| - длины этих векторов.

Сначала найдем скалярное произведение:

a*b = (1*6) + (-1*0) + (2*4) = 6 + 0 + 8 = 14

Затем найдем длины векторов:

|a| = √(1^2 + (-1)^2 + 2^2) = √(1 + 1 + 4) = √6

|b| = √(6^2 + 0^2 + 4^2) = √(36 + 0 + 16) = √52 = 2√13

Теперь можем вычислить косинус угла:

cos(θ) = 14 / (√6 * 2√13) = 14 / (2√(6*13) = 14 / (2*√(78)) = 14 / (2*√(2^2 * 3 * 13)) = 14 / (2*2*√(3*13)) = 14 / (4√(39)) = 7 / (2√(39))

Значение косинуса угла между векторами a и b равно 7 / (2√(39)).

Надеюсь, ответы были понятны и их объяснение помогло вам лучше понять материал. Если возникнут еще вопросы, не стесняйтесь задавать их.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия