BD = √(50 - 50·√3) = 5·√(2·(1-√3)) см.
Объяснение:
Решение простое: теорема косинусов. Но с Вашим условием...
В ромбе все стороны равны, а углы, прилежащие к одной стороне, равны в сумме 180°. Значит ∠А = 180-150 = 30°.
Cos30 = √3/2. Тогда из треугольника ABD по теореме косинусов:
BD = √(AB²+AD² - 2·AB·AD·CosA) или
BD = √(50 - 50·√3) = 5·√(2·(1-√3)) см.
Объяснение:
Решение простое: теорема косинусов. Но с Вашим условием...
В ромбе все стороны равны, а углы, прилежащие к одной стороне, равны в сумме 180°. Значит ∠А = 180-150 = 30°.
Cos30 = √3/2. Тогда из треугольника ABD по теореме косинусов:
BD = √(AB²+AD² - 2·AB·AD·CosA) или
BD = √(50 - 50·√3) = 5·√(2·(1-√3)) см.