16. докажите, что в произвольном выпуклом четырёхугольнике сумма диагоналей меньше периметраэтог о четырёхугольникаи боль- ше его полупериметра.

Darya0192 Darya0192    1   04.03.2019 12:20    1

Ответы
borovikovaarina borovikovaarina  24.05.2020 02:16

Пусть дан произвольный выпуклый четырехугольник АВСК. Периметр четырехугольника это сумма всех его сторон.

Нужно доказать, что (АВ+ВС+СК+АК)/2 < АС+ВК < АВ+ВС+СК+АК

 

Учитывая неравенство треугольника

AC<AB+BC, BK<BC+CK

сложив которые

получим, что
АС+ВК<АВ+ВС+СК+АК

 

Пусть О - точка пересечения диагоналей(они пересекаются так как четырехугольник выпуклый)

Снова используя неравенства треугольника

АB<AO+BO, BC<BO+CO, CK<CO+KO, AK<AO+KO

сложив которые

AB+BC+CK+AK<2*(AO+OC+BO+KO)

или тто же самое что

AB+BC+CK+AK<2*(AC+BK)

или

(АВ+ВС+СК+АК)/2<АС+ВК

таким образом доказана вторая часть требуемого.

Доказано

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия